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The concept of a vibration suppression device mounted inside the rotor blade of a
helicopter is evaluated. Two problems are considered. First, the possibility of reducing the
vibration level by applying generic/non-specific dynamic loads is examined. An
optimisation technique is used to provide the most effective parameters of the applied loads.
It is shown possible to obtain a reduction in vibration level by applying dynamic loads
along the part of the blade span. Next the concept of using an active ‘‘bender’’ type element
for vibration suppression mounted inside the blade and attached to the blade main spar
is studied. The bender is modelled as an elastic cantilever beam sandwiched on the
longitudinal faces normal to the bending plane by layers of piezoelectric material. When
an alternating voltage is applied to the piezoelectric layers, the element is excited into a
bending motion, which leads to a dynamic force and moment reaction at the attachment
point. The performance of such a device is studied using a computer model of a hingeless
rotor blade. The bender placement and design parameters are varied in order to obtain
insight into their influence on the vibration suppression. For currently practical blade and
bender parameters considered it appears that excitation by the blade motion overrides the
control available from the piezoelectric device, although future developments in
piezoelectric material performance will improve the situation.
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1. INTRODUCTION

The components on which helicopter performance and handling qualities depend most
crucially are the main and tail rotors. Improvement of these elements leads to an
enhancement of the overall rotorcraft quality. This provides the motivation for many
investigations into the possibilities of smart structure applications in rotorcraft.

Recently, several different concepts of smart rotors have been investigated [1]. From the
design point of view these are tuning the dynamic properties of the rotor, adapting the
blade shape to the ambient flight, and operating some additional device mounted on the
blades.
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Shape adaptive blades can be constructed to change the blade twist, the shape of the
blade cross-section, and the deflection in and out of the plane of rotation. Application of
shape adapting blades directly to full scale rotors appears to be not currently possible
because of insufficient actuating power and questions of reliability of existing smart
materials.

The loads on rotor blades can also be influenced by using leading or trailing edge control
surfaces. The use of blade trailing edge tabs for primary control has been successfully
implemented by Kaman in their products, most recently on the K-Max helicopter.

In the design of a trailing edge tab actuated by smart materials, different driving
mechanisms are concerned as the key factor. In some proposed solutions [2–4] a
piezoelectric bender was used for controlling the tab. Tabs driven by piezoelectric benders
were tested experimentally in reference [4] on a rotor model in hover.

It seems to be a very promising concept, so several analytical studies have been carried
out to obtain insight into different aspects of the application of a trailing edge tab. The
use of tabs for primary control was investigated in reference [5], for vibration suppression
in reference [6], for blade vortex interaction reduction in reference [7] and for rotor
performance optimisation in reference [8].

Physical phenomena involved in ‘‘smart tab’’ applications are both aerodynamic and
dynamic i.e., involving inertia and elastic loads. Up till now only the effect of aerodynamic
influence on rotor behaviour has been investigated, the influence of blade motion on the
actuating device having not yet been considered.

The aim of this study is to explore the possibility of reducing the blade vibration level
by dynamic activity only, avoiding interference with the aerodynamic environment, i.e.,
involving only inertial and elastic forces. The anti-vibration device is designed as a smart
element mounted inside the blade.

The topics considered in this study are: (1) the incorporation of a smart bender into the
blade model; (2) the possibility of suppressing blade vibration by applying only dynamic
loads; (3) the exploration of the behaviour of the blade and a blade mounted vibration
suppressor.

First, the possibility of reducing the vibration level by applying non-specific dynamic
loads at a selected part of the blade radius is explored using an optimisation technique
for parametric study. An index of vibration level is based on loads at the blade root in
a rotating frame of reference. This part of the research allows evaluation of the possibility
of eliminating different vibration components by dynamic activity.

In the second part of the study, the coupled motion of blade and internally mounted
bender is explored to reveal the possibility of direct application of this kind of device. The
possibility of influencing the motion of the bender by actuating smart layers is studied.
This investigation provides a basis for use in designing bender type driving mechanisms
for actuating trailing edge tabs.

2. ROTOR BLADE MODEL

The computer model of an individual rotor blade, developed in reference [9] for
investigation of the influence of various hub and blade designs on rotor behaviour, was
used in this study. It allows the modelling of an articulated, hingeless and bearingless rotor
by different arrangements of hub hinges and deflections of the blade. The most general
case with all hinges and blade deflections is described briefly for completeness, bearing in
mind that any subcase is provided by changing control parameters in the computer code.

A helicopter rotor in steady flight is considered. The angular velocity V of the rotor shaft
is constant.
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2.1.  

A blade attachment to the rotor shaft can be composed in many different ways including
from none to three hinges in arbitrary sequence.

The most general hub model shown in Figure 1 consists of four stiff segments described
by vectors e, f, g, h. These segments link the blade to the rotor shaft. Length and
orientation of the segments relative to the shaft allow for different hinge placement within
the hub.

At the end of each segment a flap, lag or pitch hinge can be placed, the angles being
modelled by rotation transformation matrices.

Coupling between rotations of the hub hinges (such as kinematic pitch–flap coupling
resulting from geometry of the pitch arm) can also be taken into account, in addition to
any coupling effect resulting from the placement of the hub segments.

2.2. 

The blade is attached to the hub at the point A at the end of the segment h. The blade
can be rigid or deformable. It is treated as a slender body, having arbitrary planform along
the span, and geometrically twisted about the straight axis of the last hub segment in the
rigid case, or about its elastic axis if the blade is deformable.

In this study the blade is modelled as a beam.

2.3.  -

The blade motion is comprised of rotations at the hub hinges bi (t) and deflections,
namely, in-plane bending v(x, t), out-of-plane bending w(x, t) and torsion f(x, t). The
blade deformations are discretized by free vibration, rotating modes:

v(x, t)= s
Nv

i=1

hi (x)qi (t) w(x, t)= s
Nv +Nw

i=Nv +1

hi (x)qi (t)

f(x, t)= s
Nv +Nw +Nf

i=Nv +Nw +1

hi (x)qi (t).

Figure 1. General model of the blade.
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For each type of blade deformation i.e. lag, flap, and twist the number of modes are
assumed to be Nv , Nw , Nf , respectively.

The vector of generalised co-ordinates of blade motion consists of: elastic degrees of
freedom resulting from discretisation of blade deformations; rigid degrees of freedom
corresponding to the rotations at the hinges.

p= {pi}= {pj , bi}, j=1, . . . , Nv +Nw +Nf , i=0/1/2/3, pi (t, x)= hi (x)qi (t).

Each generalised co-ordinate can be a sum of: constant parts p0, which correspond to
configurational parameters such as precone, droop, etc., angles or blade curvature;
periodic components pt (t), which describe the steady blade motion; unknown functions
q(t), which describe a disturbed blade motion

p(t)= p0 + pt (t)+ q(t).

Blade pitch control angle u(t) is added to the pitch hinge rotation u, if appropriate. Blade
pitch control is assumed in the form:

u(t)= u0 + u1 cos (Vt)+ u2 sin (Vt).

If there are both pitch and flap hinges in the hub, kinematic pitch–flap coupling can be
applied.

2.4.   

The equations of motion are defined using Hamilton’s Principle, which leads to
equations in Lagrangian form. The inertia, elastic, aerodynamic and damping loads have
separate and distinct derivations within the equations, and are described in more detail
below.

2.4.1. Inertia loads
The kinetic energy of an elemental mass on a blade is formulated initially by establishing

its instantaneous position in space relative to fixed axes. This involves introducing the
various translation and rotation transformation matrices necessary to transform a position
vector expressed relative to the undeformed blade, to one relative to fixed axes. The total
kinetic energy is formed by integration, and application of Lagrange’s equations leads to
the inertia loads in the following matrix form:

IL=B(q)q̈+2C(q)q̇+ gm (q̇, q)+ fm (q).

The elements of the matrices B, C, and the vectors gm , fm are given in Appendix A.

2.4.2. Elastic loads
The general expression for elastic loads has the form:

QE =QE (q).

It is composed of expressions describing elastic loads in hinges and those of the deflected
blade.

The elastic loads in the hinges are prescribed non-linear functions of rotations

ELH =QH (q).
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Figure 2. The flow decomposition for a two-dimensional model.

If a deformable blade, it is considered to twist about a longitudinal axis and bend in
two perpendicular directions. In this study, blade elastic loads are derived from the model
given in reference [10].

The base assumptions are that the undeformed blade has a straight elastic axis, the blade
cross-sections have symmetry of elastic properties about the chord, and after deformation
there is neither cross-section distortion nor section warping. The deflections are considered
small and the curvature moderate.

After discretisation using rotating natural modes, the stiffness load expression for elastic
degrees of freedom in the equations of motion can be put in the form:

ELE =Aq+ h.

The elements of matrix A and the vector h are given in Appendix B.

2.4.3. Aerodynamic loads
The aerodynamic loads are calculated by strip theory using a two-dimensional model.

The flow (Figure 2) is decomposed into an internal part, where the aerodynamic loads on
the aerofoil section are calculated and an external part manifesting itself as induced
velocity generated by rotor wake.

The aerodynamic loads on a section at the aerodynamic centre AC (Figure 3) are:

drag:

dD= 1
2rc(x)V2(x)CD (a) dx,

lift:

dL= 1
2rc(x)V2(x)CL (a) dx,

moment:

dM= 1
2rc2(x)V2(x)CM (a) dx,

where r is the air density and c(x) is the section chord.

Figure 3. Aerodynamic loads on a blade section.
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The flow velocity vector V results from the velocity of helicopter flight, blade motion
relative to a helicopter fuselage including shaft rotation, angles at the hinges and
deformation and induced velocity vi . The component of air flow velocity relative to the
helicopter can be allowed to vary with time, which enables the inclusion of the analysis
of gusts.

The section angle of attack a is calculated using the components of vector V

a= a tan 0Vz

Vh1.
The aerofoil aerodynamic coefficients for drag CD (a), lift CL (a) and moment CM (a) are

obtained for a section at instantaneous angles of attack a by a table look-up procedure,
which allows for non-linear characteristics.

The induced velocity vi is calculated from the Glauert formula [11].
The vector of rotor aerodynamic loads can be written as a non-linear operator in a

general form

QA =QA (t, q̇, q).

The components of this vector needed in the equations of motion are obtained via
successive transformation to the appropriate co-ordinate systems. They are rotated into
a section of a deformed blade first, and then into a system of co-ordinates in a section
of the blade before deformation. The generalised aerodynamic forces for the elastic degrees
of freedom are obtained in this system by multiplying by appropriate deflection modes and
integrating along the span.

Aerodynamic loads are transformed to the root of the blade and integrated along the
blade length. The components of these loads are taken into the appropriate equations of
motion for the rigid body degrees of freedom, these components being made zero in the
subsequent transformation.

The total blade aerodynamic loads at the shaft axis, multiplied by the number of blades
are taken into the inflow model.

2.4.4. Damping loads
Non-linear damping and/or stiffness can be included as arbitrary functions of hinge

rotation angles and angular velocities. For blade deflections viscous damping loads are
assumed. In the equations of motion, damping is expressed as non-linear vector QD (q̇, q).

2.4.5. Final form of blade equations of motion
Collecting together the expressions, the equations of motion are put in the form:

B(q)q̈=−2C(q)q̇− g(q̇, q)− f(q)+QA (t, q̇, q)+QD (q̇, q)−QE (q).

To avoid numerical difficulties the derivatives of matrices and vectors needed for
formulating these equations are obtained analytically and included in the computer code,
where they are arranged according to the chosen hub model. Algebraic manipulations for
obtaining coefficients in the equations of motion are performed within the computer
program.

The blade generalised masses and stiffnesses are calculated within a separate routine that
is run only once for the assumed blade configuration before solving (or analysing) the
equations of motion. Thus, the inertia and structural loads need not be integrated along
the blade span during the computation of the right hand sides of the equations.
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Figure 4. Control load distribution along the blade.

2.5.   

The first step of the analysis is to define the blade model i.e., the number and sequence
of hub hinges and number of modes for blade deflections.

The equations of motion are included in a set of computer codes designed to perform
a comprehensive stability analysis. For the case with no parametric excitation, the steady
deformations are obtained from the set of non-linear algebraic equations with velocities
and accelerations excluded. The numerical integration of the equations of motion is
performed using Gear’s algorithm. To calculate a blade steady motion, the equations are
integrated numerically for a prescribed number of rotor revolutions and the steady motion
taken to be that given by the values achieved during the final rotation.

3. EVALUATION OF A CAPABILITY TO SUPPRESS VIBRATION

3.1. 

This section of the paper is aimed at assessing the possibility of reducing vibration levels
by applying pure dynamic loads along the part of blade span.

The influence of the vibration suppression device on the blade is modelled as a normal
force and twisting moment distributed locally over part of the blade span (Figure 4). The
values of these loads, called controlled or additional loads, are varied in such a way as
to diminish the blade vibrations.

A blade vibration level is quantified by indices JFk , (k=1, 2, . . . , 6) which are calculated
individually for any k-th component of the blade load (force and moment) at the
prescribed place on the blade

JFk =

s
M

i=1

=Fk0(ci )−Fk (ci )=

s
M

i=1

=Fk0(ci )=

,
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where Fk0(ci ) is the base (‘‘required’’) value of the blade load, Fk (ci ) is the actual value
of the blade load, and M is the number of azimuth stations for one rotation. These indices
are calculated for blade steady motion during one rotor rotation and reflect the relation
of the difference of the base and actual values of a load to the required load.

The values of the base blade loads Fk0(ci ) needed for indices calculations can be
determined from consideration of the overall helicopter trim, or they can arise from the
need to reduce a particular blade load component and/or one of its harmonics.

To evaluate the improvement in vibration suppression, the relative performance indices
are calculated according to the formula

DJFk =
JFk0 − JFk

JFk0
,

where JFk0 is the index value before suppression activity, and JFk is the index value after
suppression activity.

The vibration reduction depends on flight conditions and design parameters of both the
blade and the vibration suppressor. To assess the possibility of reducing the overall
vibration level, a parametric study is performed. To avoid excessive computations during
such a study an optimisation procedure is utilised to obtain the most suitable sets of chosen
parameters of controlled loads.

The method selected is the Powell algorithm, described in reference [12]. This is a
non-gradient method, using the concept of a penalty function with self-adjusting direction
and step size to search for the minimum of the quality index. This algorithm forms a part
of the computations to minimise a performance index for a prescribed blade load
component.

An optimisation constraint in these calculations arises by assuming that the rotor thrust
coefficient must not vary more than a prescribed fraction of the basic value. Imposing this
constraint is necessary in order to prevent minimising the vibration level to zero by
application of very high controlled loads.

After selecting the blade model and the required blade loads and expressions for
controlled loads, the sequence of steps leading to application of this methodology is as
follows. (1) Assume the blade model and helicopter flight conditions. (2) Select the blade
base loads Fk0(ci ). (3) Calculate the rotor thrust coefficient to constrain the optimisation
process. (4) Calculate the starting value of the vibration indices JFk0 (for the blade without
additional loads). (5) Select the expressions for controlled loads and optimisation
parameters in these expressions. (6) Use the optimisation algorithm to obtain the values
of parameters minimising the selected vibration index. (7) Calculate the final value of
vibration indices JFk and improvement in vibration level DJFk .

3.2.     

The base blade configuration selected for this study comprises the deformable blade
attached to the shaft via a stiff element having lag offset. The blade can be controlled in
pitch about a feathering bearing.

Numerical results are obtained using a Westland Lynx blade [13] for the base data, given
in Table 1.

The flight conditions concern an untrimmed rotor with collective pitch control of 13°
and no cyclic control. The flow velocity is expressed as a rotor advance ratio which varies
from 0 to 0·35 in 0·05 intervals. The controlled loads are distributed on part of the blade
starting from blade section 0·83R along a short length of span of 0·2 m i.e., 0·032R. This
vibration index is measured at a blade root.
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The controlled loads are dependent on time (azimuth) in the general form of harmonic
excitation.

MD = s
N

n=0

ADn cos (nc+80n ) LD = s
N

n=0

BDn cos (nc+80n ).

The loads on the pitch controlled, non-deflecting blade are taken as the required loads.
This simulates the most stringent requirements for vibration reduction, since at the blade
root the only loads needed are those actually required for achieving the appropriate flight
condition.

The blade loads are calculated for blade steady motion which is obtained by numerical
integration of the equations of motion for the prescribed number of rotor revolutions.

The optimisation variables in the order of use inside the algorithm are amplitudes,
frequencies and phase angles of the loads respectively. The sets of these parameters differ
according to the case considered, as described below. Within the algorithm the order of
searching for values which minimise blade loads is first by applying the moment, then
force, then frequency change, and finally phase angle. This order corresponds to static
optimisation first, followed by dynamic i.e., changing forces in time.

A typical plot, Figure 5, shows the changes in relative performance index based on forces
and moments at the blade root. The curves plotted illustrate minimisation using the
optimisation algorithm of single load components at the blade root.

The separate curves in these figures are not individually identified because it is the
general trend of the curves collectively which is important for the subsequent
considerations. The results of three groups of computations, Cases I, II and III, are
presented below. Details of these are given in Table 2.

Case I
The controlled loads with only one harmonic are considered. The same frequency and
phase angle is assumed for the additional moment and force. This assumption reflects the
fact that prospective common sources of these loads result from the same inertia forces.
Optimising parameters are amplitudes of force and moment, the frequency and phase.

T 1

Blade base data

Quantity Value Units

Rotor radius 6·40 m
Blade length 5·61 m
Blade chord 0·395 m
Lead-lag offset 0·025 m
Blade mass 57·16 kg
Flap mass static moment 121·61 kg m
Flap inertia moment 437·54 kg m2

Angular velocity 34·17 rad/s
Air density 1·225 kg/m3

Linear twist: at the root 4·3°
at the tip −2·2°

Deformation Freq. 1/rev Damping %

Lag 0·656 1
Flap 1·087 3
Twist 6·298 1
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Figure 5. Change of performance index by optimising selected components for fully elastic blade.

The improvement in vibration indices obtained for the base blade model are presented
in Figure 5 and the amplitudes of the optimal controlled loads in Figure 6. The amplitudes
of moment and force are non-dimensionalised by dividing by 0·5rU2

Tc(x)2 and 0·5rU2
Tc(x),

respectively.
It can be concluded that minimisation of one component of blade load also usually

implies minimisation of all other load components. In some cases, even when the
optimisation is unsuccessful for an assumed blade load, the minimisation of other
components occurs.

T 2

Cases analysed

Case Blade Optimisation Figure
no. degrees of freedom Additional loads variables no.

I Flap, lag and twist, MD =ADn cos (nc+80n ) ADn , BDn , n, 8n0 5, 6
one mode for each LD =BDn cos (nc+80n )
deflection

I Flap bending, as above as above 7
rigid pitch

I Twist as above as above 8

II Flap, lag and twist, MD =ADn cos (nc+80n ) ADn , BDn , 8v0 9
one mode for each LD =BDn cos (nc+80n )
deflection n=1, 2, 3, 4, 5

III Flap, lag and twist, MD = s
4

n=1

ADn cos (nc+80n ) ADn , BDn , 8v0 10

one mode for each LD =KMD

deflection
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Figure 6. Amplitudes of the applied force and moment for the vibration indices in Figure 5.

Some difficulties with vibration suppression at low-speed flight are apparent. For cruise
flight an improvement in vibration level up to 40% of the base level can be achieved.

In the case considered, the optimisation algorithm produced no significant frequency or
phase changes.

Two other blade models are also considered. The first has as blade degrees of freedom
rigid rotation at the pitch bearing and flapwise bending deflection, the second only blade
torsion. These arrangements can be considered to be models of special types of blades, in
which selected deflections are suppressed. Figures 7 and 8 show the changes in resultant
blade root vertical force and twisting moment; the results seem to be not so consistent,
and in some cases the minimisation of the vibration index has been unsuccessful.

Resulting from this part of the study, the normal force and twisting moment at the blade
root are chosen from all components of blade loads for Cases II and III to follow, these
being the components of blade load most directly influenced by the controlled load.

Case II
In this case, loads at the blade root are minimised assuming constant exciting frequency
for the additional force and moment. Frequencies 1, 2, 3, 4, 5 per rev are considered. The
results of the vibration index calculation for the vertical forces and twisting moments are
shown in Figure 9.

Figure 7. Change of vibration index for the blade deformable flap-wise and rotating in pitch bearing.
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Figure 8. Change in vibration index for the blade deformable in twist only.

For all cases, the computed phase angles are inconsistent, which suggests that the
optimisation algorithm does not behave well in dynamic analysis. When the vibration
index is based on twisting moment (all the curves with the longer dashed lines) vibration
suppression is more effective for all load components. The application of the first and fifth
harmonic does not seem to be efficient, compared with the 2, 3, and 4 per rev. The best
results are obtained for excitations of 2 and 3 per rev, and the 4 per rev gives the smoothest
function.

Case III
In the last case in this group of computations the controlled loads are in the form

MD = s
4

n=1

ADn cos (nc+8n ), LD =KMD .

These formulae reflect the fact that, in the case of the dynamic suppressor, the common
source of loads is inertia force. For a definite design of bender the relationship of inertia
moment to inertia force is fixed. For the case of the bender considered in the next section
of this paper K=3·0. The optimisation parameters are the amplitudes and the phases of
four harmonics of controlled loads. The indices based on vertical force and twisting
moment are shown in Figure 10 for minimising each load at the blade root.

In this case, minimising the vertical force leads to an increase in vibration for
twisting moment. The overall level of vibration suppression is less than in the previous
cases.

The final conclusions which can be drawn from the three cases above are as follows:
(1) There is a potential for reducing the varying loads at the blade root by applying only
dynamic loads along part of the blade span. (2) These loads can be adjusted to minimise
a selected component at the blade root. (3) The results of the minimisation depend on the
blade model considered, which implies that each blade configuration should be analysed
individually. (4) It is possible for the minimisation of one component of blade load to lead
to a reduction in vibration level of the other components.

The final conclusion provides a useful indication in the design of control algorithms
based on blade force measurement. The methodology developed above provides a tool for
selecting an appropriate load component to use in a sensor application.



Advance ratio

0.2

–0.4

0.10.0

V
er

ti
ca

l 
fo

rc
e

0.3 0.4
–0.6

–0.2
0.0
0.2
0.4

0.2

–0.4

0.10.0 0.3 0.4
–0.6

–0.2
0.0
0.2
0.4

–0.4
–0.6

–0.2
0.0
0.2
0.4

–0.4
–0.6

–0.2
0.0
0.2
0.4

–0.4
–0.6

–0.2
0.0
0.2
0.4

–0.4
–0.6

–0.2
0.0
0.2
0.4

–0.4
–0.6

–0.2
0.0
0.2
0.4

–0.4
–0.6

–0.2
0.0
0.2
0.4

–0.4
–0.6

–0.2
0.0
0.2
0.4

–0.4
–0.6

–0.2
0.0
0.2
0.4

    223

4. BLADE WITH DYNAMIC BENDER TYPE DEVICE

The aim of this part of the study is to explore the behaviour of a rotor blade with an
embedded, actively controlled, bender type device. The base blade arrangement is used
here.

4.1.  

The active element comprises a ‘‘bender’’, i.e., an elastic beam element, attached to the
blade main spar, mounted inside the external envelope of the aerofoil (Figure 11). It is
sandwiched on the longitudinal faces normal to the beam bending plane by layers of smart
material. When an alternating voltage is applied to the layers, the element is excited into
a bending motion, which leads to a dynamic force and moment reaction at the attachment

Figure 9. Change in performance index for excitation by selected harmonics 1, 2, 3, 4, 5 per rev (reading down
the page). Base model.
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Figure 10. Change in vibration index for ‘‘dynamic type’’ loads. Base model.

point. To operate effectively, the dynamic loads at its root should produce an adequate
force and twisting moment about the elastic axis of the blade.

The assumptions used in the bender computer model are: (1) The bender is a cantilevered
Euler–Bernoulli beam. (2) The materials of beam and smart layers are isotropic and
uniform. (3) The upper and lower surfaces of the beam are covered by a layer of smart
material. (4) Viscous damping for each bending mode is assumed. The Lagrange equations
of motions are derived and the normal mode equations are obtained by the Galerkin
method.

The external load, resulting from beam/layer interaction is calculated using the model
described in reference [14] for the piezoelectric layers. The external bending moments from
the piezoelectric layers equations of motion are:

Ml =2hlTbd31Ep (tb + tl )tbU(t),

where b is the width of the bender, d31 is the piezoelectric constant, Ep is the modulus of
elasticity of piezoelectric, tb is the thickness of the beam, tl is the thickness of the layer,
U(t) is the voltage applied, hiT is the angle of deflection at the end of the bender for the
ith mode.

This model stems from consideration of a cantilever beam with two thin layers of active
materials bonded symmetrically on both sides of the neutral axis. The thickness of the
bonding material (‘‘glue’’) is assumed negligible and connection of piezoelectrics and beam
is assumed perfect.

The base bender data in this case are given in Table 3.

4.2. – 

Blade motion is studied for the following cases: (A) Blade without bender. (B) Bender
mounted inside the blade, excited by the blade motion, with blade deflections unaffected
by bender motion. (C) Coupled motion of blade with bender. (D) Coupled motion of blade
with bender excited by harmonic voltage.

Figure 11. The bender type vibration suppressor mounted inside the blade.
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Figure 12. Influence of bender/blade dynamic coupling. (a) – – –, No bender; ——, with bender. (b) – – –, No
coupling; — · —, coupled.

Figure 13. Influence of bender/blade dynamic coupling on possibility of excitation of bender motion: – – –,
no bender; ——, with bender; — · —, with bender 1/rev.

The results of computations are presented for the last rotor rotation of the series of
rotations assumed for calculation of blade steady motion (i.e., after nine revolutions). Twist
angles are given in radians, tip displacements in metres.

Comparing the blade motion for cases A and B (without and with bender mounted at
radius 0·83R) no influence on blade flap and lag motion is observed. The influence of
embedding the bender on blade twist angle and the bender tip motion for this case is shown
in Figure 12. The deflections of the bender tip are unrealistically high, due to excitation from
blade motion.

The attempt to influence the bender motion by exciting the piezoelectric layers
harmonically at 1 per rev with a voltage amplitude 200 V are shown in Figure 13 for blade

T 3

Bender data

Quantity Units Beam Layer

Material steel PZT
Young’s modulus N/m2 21·6×1010 6·2×1010

Density kg/m3 7800 7600
Piezoelectric coefficient d13 V/m 1·9×1010

Height m 0·01 0·0005
Length m 0·25 0·25
Width m 0·2 Full surface

(3·1%R) covered
Number of modes 1
Mode shape Cantilevered

beam
Damping % crit 0·5
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Figure 14. Influence of bender radial placement on amplitudes of blade twist and bender tip displacement:
——, m=0·00; ---(---, m=0·05; –(–, m=0·10; —(—, m=0·15; —(—, m=0·20; — —, m=0·25; – – –, m=0·30;
---(---, m=0·35.

Figure 15. Influence of cyclic pitch on bender tip displacement on bender tip motion: ——, u=0; ------, u=1;
– – –, u=2; — —, u=3.

twist and bender tip motion. The conclusions drawn from this result is that the bender
has some slight influence on the blade twist deflection but the bender excited motion cannot
be influenced by applying voltage to piezoelectric elements.

The influence of advance ratio and bender radial position on the blade/bender motion
is investigated next. The amplitudes of blade twist angles and bender tip deflections are
shown in Figure 14 as functions of bender radial placement for different advance ratios.
For constant advance ratio, blade twist amplitude does not depend on bender placement.
The bender tip amplitude increases rapidly with radial distance from the shaft axis but

Figure 16. Influence of beam and layers thickness: ------, hb =0·005, hl =0·0005; ——, hb=0·0075, hl =0·001;
– – –, hb =0·01, hl =0·001.
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stabilises outboard of 0·25R. It can be concluded that there is a very narrow margin of
blade placement radius and advance ratio within which the bender tip deflections are
acceptable.

The next case, Figure 15, illustrates the influence of cyclic pitch on bender motion for
the bender placed close to the blade root at r=0·13R and for zero advance ratio. The
blade collective pitch is 13° and the longitudinal and lateral cyclic pitch angles are varied.
Two cases are compared, namely, bender free and excited at 1 per rev and 200 V. The cyclic
pitch excitation enables the bender motion to be influenced for the design parameters
chosen.

Some results of a parametric study undertaken to investigate the influence of the
beam/bender thickness ratio on the possibility of influencing the device motion are
presented in Figure 16. For all cases it was impossible to stabilise bender motion, even
when applying a higher voltage of 600 V.

5. CONCLUSIONS

From the current study it can be concluded, that: (1) The concept of suppressing
vibrations by applying only dynamic loads along part of the blade span can lead to
substantial vibration reduction in terms of blade root loads. (2) Suppressing one load
component can lead to suppression of the others. This result may be useful both for
vibration suppression concept and control system design. (3) A practically configured
bender type device mounted inside a realistic blade is subjected to considerable excitation
due to blade motion. Attempts to reduce this excited motion by applying even very
thick PZT layers and exciting them by high voltage transpired to be unsuccessful. (4) Blade
cyclic pitch can be regarded as the main factor causing excessive bender movement. The
results have implications for the use of bender type devices in operating blade mounted
tabs.
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APPENDIX A

The elements of matrices B and C and vectors fm and gm are given below

Bni =gR gA

rb01r0

1qn1
T

01r0

1qi1 dA dR, Cni =gR gA

rb01r0

1qn1
T

DTD� 01r0

1qi1 dA dR,

fmn =gR gA

rb01r0

1qn1
T

DTD� r0 dA dR,

gmn = s
Ng

i=1

s
Ng

j=1

q̇iq̇j gR gA

rb01r0

1qn1
T

0 12r0

1qi1qj1 dA dR,

where D is the transformation matrix due to shaft rotation, rb is the blade density, r0 is
the position vector of the blade point, A is the blade cross-section, R is the blade length
and qi are the generalised co-ordinaters of the blade motion.

APPENDIX B

Matrix A

aii =gR gA

{[EI cos2 (ug )+EJ sin2 (ug )](h0i )2 + ts (x)(h'i )2} dA dR, i=1, . . . , Nv ,

aij =−gR gA

{[EI−EJ] cos (ug ) sin (ug )h0i h0j } dA dR, i=1, . . . , Nv,,

j=Nw +1, . . . , Nw ,

aij =gR gA

{(u'g )Ch cos (ug )h'i h0j + ts (x)hs sin (ug )h0i hj} dA dR, i=1, . . . , Nv ,

j=Nw +Nw +1, . . . , Nw+Nw +Nf ,

aii =gR gA

{[EI sin2 (ug )+EJ cos2 (ug )](h0i )2 + ts (x)(h'i )2} dA dR,

i=Nv +1, . . . , Nw +Nw ,
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aij =gR gA

{(u'g )Ch sin (ug )h'i h0j + ts (x)hs cos (ug )h0i hj} dA dR,

i=Nv +1, . . . , Nw +Nw j=Nw +Nw +1, . . . , Nw +Nw +Nf ,

aij =gR gA

{[GJ+(u'g )LK + ts (x)KEhs ](h'j )2} dA dR,

i=Nw +Nw +1, . . . , Nw+Nw +Nf .

Vector h

h1 =−gR gA

{ts (x)hs cos (ug )h0i } dA dR, i=1, . . . , Nw ,

h1 =gR gA

{ts (x)hs sin (ug )h0j } dR dA, i=Nw +1, . . . , Nw +Nw ,

h1 =gR gA

{ts (x)KEu'gh'j } dA dR, i=Nw +Nw +1, . . . , Nw+Nw +Nf

where

ts =gR gA

[rb (Vz)2] dA dz, AE =gA

E dA, hs =
1
AE gA

Eh dA,

kT =
1
AE gA

E(h2 + w2) dA,

KE =
1
AE gA

E(h2 + w2 − kT ) dA, LK =gA

E(h2 + w2 − kT )2 dA,

Ch =gA

E(h2 + w2 − kT )(h− hs ) dA,

GJ=gA

G(h2 + w2) dA, EJ=gA

Ew2 dA, EI=gA

E(h− hs )2 dA.


